Voltage Transducer LV 100-750

For the electronic measurement of voltages : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

CE

V _{PN} V _P I _{PN}	Primary nominal r.m.s. voltage Primary voltage, measuring range Primary nominal r.m.s. current		750 0 ± 1 13.33	125	V V mA	
R _M	Measuring resistance		R _{M min} R _{Mmax}		t	
	with ± 15 V	@ ± 750 V _{max} @ ± 1125 V _{max}	0 0	170 90	Ω Ω	
I _{SN}	Secondary nominal r.m.s	. current	50		mA	
K _N	Conversion ratio		750 V /	750 V / 50 mA		
V _c	Supply voltage (± 5 %)		± 15		V	
I _c	Current consumption		10 + I _s		mA	
Ŭ _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6		kV	

Accuracy - Dynamic performance data

Х _G е	Overall Accuracy @ \mathbf{V}_{PN} , $\mathbf{T}_{A} = 25^{\circ}C$ Linearity		± 0.7 < 0.1		% %
I _o	Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$	0°C + 70°C	Typ	Max	mA
I _{o⊤}	Thermal drift of I_o		± 0.2	± 0.2	mA
t _r	Response time @ 90 % of V_{PN}		100	± 0.3	µs

General data

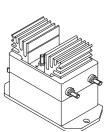
T _A	Ambient operating temperature	0+70	°C
Ts	Ambient storage temperature	- 25 + 85	°C
N	Turns ratio	7500 : 2000	
Р	Total primary power loss	10	W
R ₁	Primary resistance @ $T_{A} = 25^{\circ}C$	56.25	kΩ
Rs	Secondary coil resistance @ $T_A = 70^{\circ}C$	60	Ω
m	Mass	850	g
	Standards	EN 50178	

$V_{PN} = 750 V$

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Primary resistor **R**₁ incorporated into the housing.

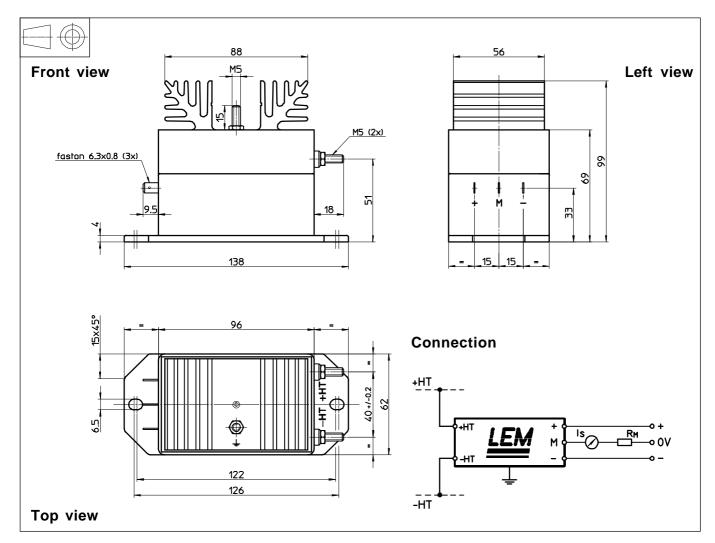
Advantages


- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

www.lem.com


030129/4

Dimensions LV 100-750 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening
- Fastening torque max
- Connection of primary
- Connection of secondary
- Connection to the ground
- Fastening torque max

 \pm 0.3 mm 2 holes Ø 6.5 mm M6 steel screws 5 Nm or 3.69 Lb - Ft. M5 threaded studs Faston 6.3 x 0.8 mm M5 threaded stud 2.2 Nm or 1.62 Lb. -Ft.

Remarks

- $\mathbf{I}_{_{\! \mathrm{S}}}$ is positive when $\mathbf{V}_{_{\! \mathrm{P}}}$ is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.